
High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

Meta-Amphion: Scaling up
High-Assurance Deductive Program Synthesis

Abstract
Amphion is a domain-independent program-synthesis system. It is specialized to specific ap-

plications through the creation of an operational domain theory. The Meta-Amphion system is be-
ing developed to empower domain experts to develop and maintain their own Amphion
applications.Operationalization, a technology for automatically transforming declarative domain
theories into efficient, domain-specific program synthesis systems, is described here.

A prototype of the system has been implemented in TOPS,Theory Operationalization for Pro-
gram Synthesis. Sets of axioms in the domain theory are replaced by specialized procedures. TOPS
uses partial deduction to augment the procedure with the capability to construct ground terms for
deductive synthesis. The procedures are automatically interfaced to a resolution theorem prover.

Answers to deductive synthesis problem specifications can be generated using procedures syn-
thesized by TOPS if and only if they can be generated without using the procedures. Experiments
show that the procedures synthesized by TOPS can reduce theorem proving search at least as much
as hand tuning of the deductive synthesis system.

1.0 Introduction
This paper is concerned with developing program synthesis systems, that is, software that au-

tomatically creates computer programs. Amphion is a domain-independent, high-assurance pro-
gram synthesis system developed by NASA [Lowry et al. 94, Stickel et al. 94]. It is a generic system
that is specialized to a particular application domain. This specialization requires the creation of a
declarative domain theory consisting of a specification language, an output language, and knowl-
edge relating the two languages. Amphion applications can be used to generate programs consisting
of hundreds of lines of code, even by users who have no experience in program synthesis or even
in programming. The programs are generated via deductive synthesis. An automated theorem prov-
er mathematically proves a theorem, and a program is extracted from the proof. The program is a
logical consequence of the domain theory. This provable correctness is an important feature of de-
ductive program synthesis systems.

The termcombinatorial explosion refers to the dramatic growth in the search space of auto-
mated theorem provers as problem specifications get larger. Amphion relies on the automated, first-
order, resolution theorem prover, SNARK, to generate programs. In the past, Amphion applications
have been limited by SNARK’s combinatorial explosion. It is theoretically possible to build a de-
clarative domain theory and use an automated theorem prover to find proofs. In practice, the com-
binatorial explosion makes it is difficult or impossible to obtain proofs for all but simple problems
using such a domain theory. To make theorem proving tractable for moderate problems, the system

Steve Roach
Recom Technologies

NASA Ames Research Center
Code IC, MS 269-2

Moffett Field, CA 94035
sroach@ptolemy.arc.nasa.gov

Jeff Van Baalen
NASA Ames Research Center

Code IC, MS 269-2
Moffett Field, CA 94035

jvb@ptolemy.arc.nasa.gov

Michael Lowry
NASA Ames Research Center

Code IC, MS 269-2
Moffett Field, CA 94035

lowry@ptolemy.arc.nasa.gov

High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

must generally be tuned, a process calledoperationalization. Figure 1 shows that as the size of a
specification increases, the search time for an un-tuned system grows exponentially, while the
search time for a tuned system grows relatively slowly.

Figure 1: Time vs. Problem Size
Problem size increases along the x-axis. The time increases along the
y-axis. The nearly vertical line is for an un-tuned system. The other
two lines are for operationalized systems.

The typical approach to addressing combinatorial explosion in deductive synthesis is to oper-
ationalize the synthesis system to specific problem classes. The paradigm employed is to start with
a set of problem specifications and observe the behavior of the theorem prover for each case. The
system is operationalized by manually reformulating the domain theory and manually tuning the
parameters of the theorem prover. This can be an extremely difficult and time consuming process.
Further, reformulating axioms results in changing the domain theory from a simple declarative ax-
iom set to an axiom set that depends on the characteristics of the theorem prover being used. Hence,
the axioms become more difficult to verify and maintain, since they adopt a more operational than
declarative characteristic. In the past, Amphion applications have been constructed by experts in
deductive synthesis and have required substantial operationalization for each new domain. This has
been the major impediment to the construction of Amphion applications.

Adequate tools to assist in creating and maintaining deductive synthesis systems are not yet
available. Meta-Amphion is currently being developed to fill this void [Lowry and Van Baalen 97,
Roach 97]. The research described here has resulted in a prototype of a tool,Theory Operational-
ization for Program Synthesis (TOPS). TOPS takes a formal, declarative domain theory as input
and automatically generates a domain-specific deductive synthesis system. It transforms an ineffi-
cient system based on general-purpose inference rules into an efficient system based on special-pur-
pose algorithms and data structures comparable to a system that would be hand-crafted by an
expert. Manual tuning of parameters and manual reformulation of domain theories is replaced by
automatic generation of specialized procedures that eliminate much of the search associated with
program synthesis.

In contrast to this usual paradigm for theorem proving applications, TOPS analyzes the domain
theory and generates procedures based on this analysis. The analysis is independent of test cases
and depends only on the properties of the axioms in the domain theory. TOPS demonstrates the fea-
sibility of automatic operationalization of deductive synthesis domain theories.

High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

2.0 Deductive Synthesis
Deductive synthesis systems take a specification of the form and

prove a theorem of the form [Green 69, Manna and Waldinger 92]. Here,

is some set of preconditions on the input variables ; is a set of outputs; and is a set of post
conditions constraining the outputs in terms of the inputs. The theorem prover constructs the term

 that computes the outputs. For example, suppose we have a domain theory with two axioms,
 and 1, and a specification of the form . This

specification says that for some , is equal to both and . The variable is the out-
put. Obviously the substitution makes the specification a theorem of the domain the-
ory. Furthermore, it shows how to compute the value of from the universally quantified input

.

Many automated theorem provers work by refutation. A refutation proof is finished when it
shows that the negation of the goal is unsatisfiable when combined with some theory. More precise-
ly, a refutation proof of a formula from a set of formulas derives false from . The set
of formulas is the domain theory. Resolution is an inference rule that is used to derive new
formulas that are logical consequences of a set of formulas in clause form. A resolution proof is
obtained by repeated application of the resolution rule. By definition, the empty clause is equivalent
to false, thus the proof is finished when the theorem prover derives the empty clause.

2.1 Amphion
Amphion is a general purpose, deductive, program synthesis system that greatly facilitates re-

use of domain-oriented software libraries. It enables a user to state a problem in an abstract, domain-
oriented vocabulary using a graphical notation. Then it automatically generates a program that im-
plements a solution to the problem specification. The generated program consists of assignment
statements and calls to subroutines from the software library. It takes significantly less time for an
experienced user to develop a problem specification with Amphion than to manually generate and
debug a program. More importantly, a user does not need to learn the details of the components in
the library before using Amphion to create useful programs. This removes a significant barrier to
the use of software libraries.

Amphion is described in detail in [Lowry et al. 94, Stickel et al. 94]; an overview is presented
here. Amphion consists of three subsystems: a specification acquisition subsystem; a program syn-
thesis subsystem; and a domain-specific subsystem. The specification acquisition and program syn-
thesis subsystems are generic across domains.

Amphion’s specification acquisition system includes a graphical editor that enables a user to
interactively build a diagram representing a formal problem specification in first-order logic. The
editor provides an intuitive interface that interactively guides the user in the creation of a specifica-
tion. The menu system is driven by type information extracted from the domain theory.

In general, specifications are given at anabstract level, and programs are generated at acon-
crete level. Abstract objects are free from implementation details; thus, geometric points or lines

1. For example, the function could take a real number and interprets it as a distance in
meters, and the function could take a real number and interprets it as a distance in feet.
Then is a function that converts between feet and meters.

x() y() P x() R x y,()→()∃∀

x() P x() R x f x(),()→()∀ P

x y R

f x()
x x= g u() h f u()()= in() out x,() g in() x= h out()∧ x=()∃∀

g

h

f

x x g in() h out() out

out f IN()←{ }
out

in

φ Φ Φ φ¬{ }∪
Φ

High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

are abstract concepts while arrays of real numbers in FORTRAN are concrete, implementation level
constructs.

In Amphion, graphical specification diagrams are equivalent to specifications of the form:

. Here is a vector of universally quantified input variables and is a vector
of output and intermediate variables existentially quantified within the scope of the input variables.
The conjuncts are all expressed in the abstract specification language, except for conjuncts express-
ing the relationships between concrete input or output variables and the abstract variables they rep-
resent.

The program synthesis subsystem consists of the SNARK theorem prover and a translator that
generates code in the syntax of the target programming language [Stickel et al. 94]. A functional
(applicative) program is generated through deductive synthesis [Manna and Waldinger 92]. During
a proof, substitutions are generated for the existential variables through unification and equality re-
placement. The substitutions for the output variables are constrained to be terms in the target lan-
guage whose function symbols correspond to the components of the library. The functional
program is translated into a target programming language, such as FORTRAN or C++, through pro-
gram transformations.

The domain specific components of an Amphion application consist of a domain theory, a sub-
routine library, and a set of theorem proving tactics. An Amphion domain theory has three parts: an
abstract theory whose language is suitable for problem specifications, a concrete theory that in-
cludes the target component descriptions, and an implementation relation between the abstract and
concrete theories. These implementation relations are axiomatized through abstraction maps as de-
scribed by Hoare [Hoare 73]. theorem proving tactics guide SNARK from abstract, specification-
level constructs towards concrete, implementation-level constructs. The tactics are implemented by
defining an agenda-ordering function. The agenda is an ordered list of supported clauses, that is,
clauses that are descendants of the negated goal. The agenda-ordering function is a heuristic func-
tion that puts the clauses most likely to lead to a refutation at the top of the list. As shown in Figure
1, the theorem proving tactics are highly effective, reducing program synthesis times from hours,
or sometimes days, to minutes. The tactics do not need to be tuned for individual problems, but of-
ten do require expert manual tuning when a domain theory is modified [Lowry et al. 94].

Amphion has been applied to three domains at NASA. Amphion/NAIF solves problems in so-
lar system geometry. Another application, Amphion/CFD, generates programs that solve problems
in computational fluid dynamics, while Amphion/TOT solves routine problems in space shuttle
navigation. Amphion/NAIF has generated programs that are in use by space scientists, including
programs that perform geometry calculations and construct animations to assist in planning for the
upcoming Cassini mission to Saturn.

2.2 Meta-Amphion
Meta-Amphion is a set of tools which enable domain experts to create and maintain Amphion

applications. In the past, applications have been created by deductive synthesis experts. This has
been a significant bottleneck to the development of program synthesis systems. Empowering do-
main experts (instead of deductive synthesis experts) to maintain Amphion applications is the key
capability that must be achieved in order for Amphion applications to become widely used. In order
for a program synthesis system to have a language and abstractions intuitive to domain practitio-
ners, the responsibility for the creation and maintenance of these systems must lie with the domain
experts who create and maintain software libraries.

Meta-Amphion is currently under development. Its key components will be a user interface to

x() y() C1 … Cn∧ ∧()∃∀ x y

High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

guide domain experts in creating and extending a domain theory, a subsystem to check the consis-
tency of axioms created by the domain expert, and a subsystem to automatically operationalize a
domain theory. This last subsystem will eliminate the need for program synthesis experts to tune
the domain theory. In the implemented prototype of TOPS, manual tuning of complicated agenda-
ordering functions is replaced by automatic generation of specialized procedures. Manual reformu-
lation of a domain theory is replaced by automatic reformulation of axioms during the process of
procedure generation.

3.0 Procedures for Theorem Proving
Resolution refutation is universal in the sense that any provable first-order formula is provable

using general resolution. However, resolution is a syntactic rule and is unable to make any use of
semantic knowledge about the symbols it manipulates. A promising approach to operationalizing
deductive synthesis systems is to add specialized procedures to the theorem prover to eliminate un-
directed search [Nelson and Oppen 79, Shostak 84, Van Baalen 92]. Asatisfiability procedure for
a logical theory T is an algorithm for determining whether or not a formula is satisfiable in T.The-
ory resolution andRQ resolution provide inference rules that utilize semantically based satisfiabil-
ity procedures when constructing refutation proofs. These procedures can be identified based on
axioms present in the domain theory, as opposed to tuning tactics based on the observed perfor-
mance of the theorem prover.

Resolution allows the derivation of a resolvent formula from two given formulas. This resol-
vent is logically implied by the conjunction of its parents, that is, whenever the parent formulas are
both true, the resolvent formula is also. As shown in the left column of Table 1, given two parent
formulas (in clause form) containing complementary literals (R in the first parent and the negation
of R in the second), a resolvent can be formed. A refutation proof is a proof by contradiction. A
proof starts with the axioms of the theory and the negation of the goal. Resolution is used to derive
an unsatisfiable clause (the contradiction).

Theory resolution generalizes resolution [Stickel 85]. Theory resolution relaxes the require-
ment that the literals be syntactically complementary. Instead, theory resolution finds the smallest
conjunction of literals that is unsatisfiable with respect to some theory. For example, suppose we
have a theory that enforces a strict ordering on the domain of the predicate symbol '>'. Then we
know that it is not possible for botha>b andb>a to be true. Thus the theory resolvent is de-
rived for the two parent clauses in the center column of Table 1 because(a>b) and (b>a) is unsat-
isfiable in the background theory of ’>’. In practice, a special procedure would be invoked to
identify the unsatisfiable conjunction of literals.

In RQ resolution (also called constrained resolution), a clause is written as an implication
[Burckert 91]. The antecedent is called theconstraints (or restrictions). Recall that for arbitrary
first-order formulas and , the clause is equivalent to the formula . For RQ reso-

Table 1: Resolution, Theory Resolution, and RQ Resolution

Resolution Theory Resolution RQ Resolution

parent

parent

resolvent

P Q∨

R P∨ a b>() P∨ S1 R P∨→

R¬ Q∨ b a>() Q∨ S2 R¬ Q∨→

P Q∨ P Q∨ S1 S2∧() P→ Q∨

α β α¬ β∨ α β→

High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

lution, the clause form of is rewritten as a set of formulas of the form where is a
conjunction of literals and is a disjunction of literals. A refutation proof is finished when a for-
mula is derived for which is unsatisfiable (empty) and is valid. An example is given in the
right column of Table 1. The two given clauses are written in implication form. The RQ resolvent

 is formed when it is determined that is satisfiable with respect to the
background theory. The resolvent can be formed if is valid2. In practice, a special
procedure would determine the satisfiability and validity of the antecedent.

3.1 DRAT
A novel approach to the incorporation of procedures into a theorem prover was demonstrated

by DRAT, Designing Representations for Analytical Tasks [Van Baalen 91, Van Baalen 92].
DRAT automatically identifies instances of theories within a domain theory and replaces the cor-
responding sets of axioms with instances of specialized procedures taken from a library of proce-
dures. A problem posed to DRAT is a pair <T,Φ>, where T is a first-order theory andΦ is a set of
queries. Technically, DRAT designs a ground literal satisfiability procedure, that decides for a the-
ory whether a conjunction of ground literals is satisfiable. A literal satisfiability procedure is used
to solve a problem by converting each query inΦ into a satisfiability question.

Figure 2: DRAT’s Binary Relation Hierarchy

Given a problem, DRAT performs a semantic analysis of the non-ground axioms in T and re-
places as many as possible with instances of specialized decision procedures. These decision pro-
cedures are interfaced to a general purpose theorem prover through theory resolution. The
combined theorem prover/decision procedures and the remaining axioms perform the same infer-
ences as the general purpose theorem prover with all the axioms, but much more efficiently. For
example, one representative problem took over three hours to solve with a general-purpose resolu-
tion theorem prover. By contrast, DRAT automatically produced a theorem prover/decision proce-
dure combination that solves the same problem in a few seconds.

DRAT uses a hierarchy of theories to classify the sort, relation and function symbols from T.
The root nodes of the hierarchy are defined syntactically (e.g., unary function, symmetric binary
relation), nodes lower down are semantically specialized (e.g., one-to-one function, partial order).
The theory of a procedure at a node is the union of the axioms labeling the edges on paths from the
root to the node. The hierarchy for binary relations is shown in Figure 2.

2. Recall that a formula issatisfiable if it is true insome model; it isvalid if it is true inall
models.

S φ¬{ }∪ α β→ α
β
β α

S1 S2∧() P→ Q∨ S1 S2∧()
P Q∨ S1 S2∧()

High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

The theories are parameterized by nonlogical symbols. These are instantiated when DRAT se-
lects a sort, relation, or function symbol from T. Symbols are classified by exploring edges from a
root node. DRAT invokes a theorem prover to attempt to prove the instantiated axioms associated
with an edge, given the theory of a problem. When the axioms can be proved, the edge is followed
to the next node. Some edges are mutually exclusive, e.g., reflexive and irreflexive edges for binary
relations. DRAT follows the edges as deeply as possible into the hierarchy, since more specialized
theories are associated with more efficient decision procedures.

3.2 Procedures for Deductive Synthesis
SNARK has been extended to incorporate inference rules which facilitate the use of special

procedures in finding a proof of a specification [Van Baalen and Cowles 97, Roach 97]. These pro-
cedures have two principle functions. First, they determine the satisfiability and validity of conjunc-
tions of literals during deductive synthesis. Second, they construct ground terms which are bound
to existential variables in the original specification. These bindings are propagated to SNARK and
are incorporated in the answer term. All of SNARK’s inference rules have been extended. These
rules are resolution, paramodulation, subsumption, and rewriting. The resolution rule is similar to
theory resolution and RQ resolution. Clauses are separated and written as constrained clauses, and
a specialized procedure determines the satisfiability and validity of the constraints in the antecedent
of a resolvent.

 The separation of formulas is based on the language of the theory of the procedure and the
language of the domain theory. LetΣ be the language of the domain theory andΓ be the language

of the theory of a procedure. Then . We want to separate each formulaφ into a logically
equivalent formula where the relation symbols of are in the languageΓ, and is in the
languageΣ−Γ. Assume thatφ is in clause form. For every literalδ in φ whose head symbol is a
relation symbol in Γ, move the negation ofδ into the conjunction . Move the remaining literals
into . Now for each termτ in that is in the languageΓ, create a new variable x and a new equal-
ity x=τ. Add this equality to , and replaceτ in by x. This separation allows terms in the language
Σ−Γ to appear in . The procedures will treat these terms as uninterpreted constants. For example,
suppose there is a procedure for a theory whose language includes the symbols and . The sep-
arated form of the formula is .This sepa-
ration is similar to the separation in [Nelson and Oppen 79] and is described in [Roach 97].

The deductive synthesis procedures answer queries for deductive synthesis. Informally, a de-

ductive synthesis query (DSQ) is a query of the form where the signature
of the query is restricted to the abstract portion of the domain theory. and are quantifier free

formulas. contains variables in the union of the inputs and the outputs . All of the output vari-
ables have concrete sorts. Concrete function symbols are not allowed to appear in queries. Terms
with concrete function symbols are program fragments, so ultimately this restriction prevents que-
ries from mentioning partially instantiated programs. Note that a deductive synthesis procedure is
not a decision procedure. Rather than determine the validity of arbitrary formulas, a deductive syn-
thesis procedure only answers the types of queries encountered during deductive synthesis.

The operation of a deductive synthesis procedure is summarized as follows. The theorem prov-
er is given a DSQ. The DSQ is negated, since a proof is constructed by refutation. Each formula is
rewritten as an implication with the antecedent restricted to the language of the theory of the pro-
cedure. During resolution, the deductive synthesis procedure combines antecedents from parent
formulas and decides the satisfiability of the new antecedent. When possible, the procedure gener-
ates ground terms which are bound to the output variables in the antecedent and passes those bind-

Γ Σ⊆
α β→ α β

α
β β

α β
α

R f

R f a() x,()¬ Q y f z(),()¬∨ R f a() x,() v1 f z()=()∧ Q y v1,()¬→

x() y() P x() R x y,()→()∃∀
P R

R x y

High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

ings to SNARK as substitutions. The refutation is found when a formula is derived for which the
antecedents are valid and the consequents are unsatisfiable.

The process is complicated by the fact that the deductive synthesis procedure may itself be
composed of multiple sub-procedures. In this case, the languages of the sub-procedures must be
separable. If the concrete language of the theory of a sub-procedure is disjoint from the concrete
language of the rest of the theory, then any term in the concrete language of the sub-theory gener-
ated for an existential variable is uninterpreted with respect to the remaining theory. Thus this term
will work as well as any other such term. Therefore, the procedure does not need to generate any
other terms.

3.3 Extending DRAT to Deductive Synthesis
The approach to operationalization taken by TOPS is to analyze a domain theory and replace

axiom sets in the theory with specialized procedures. In this manner, TOPS replaces general pur-
pose reasoning with directed, special purpose reasoning specifically targeted towards program syn-
thesis. Using this system, a declarative domain theory is automatically converted to an operational
domain theory using mathematically sound transformations.

TOPS extends DRAT to program synthesis. Like DRAT, the TOPS library contains parame-
terized procedure templates. An instance of a procedure (or simply “a procedure”) is generated by
providing values for the parameters. TOPS analyzes a domain theory to identify sets of axioms that
are instances of the theory of a library procedure template. An instance of a procedure is specialized
to generate ground instantiations for existential variables specifically in the context of deductive
synthesis. The axioms captured by the procedure are removed from the domain theory, and the pro-
cedure is interfaced to the theorem prover. The theorem prover serves as an integrating framework
for the sets of procedures as well as a procedure for axioms that are not captured by procedures.

DRAT was designed to produce procedures that solve analytical reasoning problems. TOPS is
designed to produce procedures for deductive synthesis. Analytical reasoning problems are ground
satisfiability problems (i.e., is a ground formula satisfiable in a given theory?). In contrast, deduc-
tive synthesis problems for Amphion are specifications given as pre- and post-conditions. In addi-
tion, TOPS’ library includes procedures for computing the satisfiability of conjunctions of literals
containing existentially quantified variables, as opposed to the satisfiability of ground literals.

In contrast to analytical reasoning problems, an important consideration for problems in de-
ductive synthesis is the algebraic structure of output terms, that is, the equivalence classes of terms
bound to output variables. For deductive synthesis we want the output terms to represent the “best”
program in their equivalence class.3

Amphion domain theories also differ from analytical reasoning domain theories. The latter are
unstructured and primarily relational. In contrast, Amphion domain theories are structured into an
abstract and a concrete level, with abstraction maps between these levels. Conceptually, each TOPS
satisfiability procedure solves a class of small program synthesis problems. Each procedure gener-
ates inferences that are logically implied by the theory of the procedure.

4.0 TOPS: Automatic Generation of Procedures
Through experience with the NAIF domain, several types of axioms have been identified as

leading to combinatorial explosions in the theorem prover’s search space. These axioms are used

3.Amphion assumes that the best programs are represented by the ground terms with the
smallest number of function applications.

High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

during deductive synthesis to construct terms that are bound to existential variables in the specifi-
cation. TOPS is designed to identify these axiom sets. TOPS instantiates and composes satisfiabil-
ity procedures from a library of procedure templates. Since axioms implied by the procedures are
removed from the domain theory, the theorem prover does not generate multiple child formulas
from a single parent, as it would without the procedures.

Figure 3: TOPS Processing Domain Theory Axioms

 The basic function of TOPS is depicted in Figure 3. The DRAT hierarchy is used to classify
abstract relation symbols in the domain theory. For each relation symbol classified, a procedure is
selected from the DRAT library of procedures. TOPS augments the procedure by pre-computing
terms using partial deduction and knowledge compilation [Komorowski 92, Selman and Kautz 96].
Axioms captured (implied) by the TOPS procedure are removed from the domain theory. Remain-
ing axioms that contain terms in the language of the theory of the procedure are separated relative
to this language. The six steps below outline the TOPS algorithm.

(1) Each abstract relation symbol is classified using the DRAT hierarchy. To classify a symbol,
the theorem prover is called to prove each property in the hierarchy. For example, to classify a bi-
nary relation R as symmetric, the theorem prover is invoked to prove . A pro-
cedure template is selected from the library of procedure templates.

(2) For each abstract relation symbol classified in the previous step, the functions mapping
concrete sorts to the abstract sorts are identified, again by calling the theorem prover. These are used
to construct program fragments from the abstract, specification-level terms. The construction of
these terms leads to combinatorial explosion. The mappings identified here restrict TOPS to just
“problem” axiom sets.

(3) At program synthesis time, each procedure must be able to determine satisfiability of for-
mulas with respect to a theory. The language of this theory consists of the abstract relation symbol,
the functions mapping concrete to abstract sorts, and concrete constants. In addition to determining
satisfiability, the procedure must be able to construct ground, concrete terms. Therefore, the proce-
dure must encapsulate enough information to be able to construct terms that are answers to any DSQ
in the language of the theory of the procedure. TOPS captures this information by using partial de-
duction (invoking the theorem prover) to generate universally quantified partial answers to a set of
DSQs. The set of DSQs has the property that every DSQ in the language of the theory of the pro-
cedure is an instance of some DSQ in the set.

Semantic Properties

Semantic Properties

Axioms containing
terms in language

classified by
DRAT

Partial
Deduction

Separated
Axioms

Domain Theory

of the
Abstract Level

of the
Concrete Terms

T

xy() Rxy() Ryx()→()∀

High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

(4) A procedure instance is created and integrated with the theorem prover. The procedure in-
stance includes the abstract relation symbol, the functions mapping concrete to abstract sorts, and
the set of partially deduced answers. TOPS uses the theorem prover/procedure combination to
prove as many axioms in the domain theory as possible. Axioms proved using the procedure are
“captured” by the procedure and are removed from the domain theory [Van Baalen 91].

(5) Axioms not captured by the procedure but that mention terms in the abstract language of
the procedure are separated into antecedent/consequent form. This separation facilitates the use of
the new inference rules for deductive synthesis.

(6) TOPS verifies that all of the necessary axioms have been captured by the procedure. Any
axiom mentioning terms in the concrete portion of the language of the procedure must have been
captured. If any remain, then the necessary separation of languages has not been obtained and
TOPS will not produce a procedure.

4.1 Correctness of TOPS
TOPS is considered to generate correct procedures if the procedures are sound and complete.

By “sound” we mean that any program generated using TOPS synthesized procedures can be gen-
erated without using those procedures. The properties and terms used by each procedure are de-
rived from the domain theory by a sequence of proofs. Axioms removed from the domain theory
are proved using the procedure. Thus the procedure is as strong, but only as strong as the removed
axioms. More formally, any answer derived using the TOPS procedures is a logical consequence of
the original domain theory.

By “complete” we mean complete with respect to DSQs. Given a DSQ for which an answer
can be derived without using the procedures, an answer can be derived using the procedures. This
does not imply that the answers are identical, just that the theorem prover will find some answer
using the TOPS procedures. The procedure from the DRAT library provides inferences at the ab-
stract level. For example, the procedure for a symmetric binary relation takes advantage of the fact
that the order of the related terms can be reversed. The set of partially deduced answers allows the
procedure to construct concrete-level terms. Since DSQs do not contain program fragments, the
procedure only needs to construct concrete-level terms. It does not need to reason about them. For
example, it is not necessary for the procedure to determine whether two concrete terms are equal in
a given theory. Since the languages are separated, ground terms generated by any procedure are
uninterpreted outside the procedure.

5.0 Results
TOPS’ compilation algorithm is highly effective. The results are better than even those ob-

tained by manual tuning of theorem proving tactics. A prototype of TOPS was applied to one re-
lease of the NAIF domain theory. This domain theory consists of 330 first-order axioms that define
the abstract specification language, the pre- and post-conditions for a set of FORTRAN routines in
the NAIF tool kit, and the abstraction mappings between the concrete and abstract sorts. To test
TOPS, we compared the performance of three deductive synthesis systems: a TOPS-generated sys-
tem, an untuned system, and a system manually tuned to the NAIF domain by program synthesis
experts.

A series of 27 specifications were used. These specifications ranged from trivial with only a
few literals to fairly complex with dozens of literals. Half of the specifications were obtained from
domain experts, thus this set is representative of the problems encountered during real-world use.
Figure 1 compares the time required by SNARK to find an answer for a specification to the number

High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

of literals in the specification. The untuned system shows exponential behavior, and the search for
a solution quickly became intractable. The hand-tuned system and the TOPS-synthesized system
both show more reasonable behavior, with the TOPS system finding proofs somewhat faster than
the hand-tuned system.

Figure 4: Inference steps vs. Problem Size.
Problem size increases along the x-axis. The number of inference steps re-
quired to find a solution increases along the y-axis. The TOPS-generated
procedures perform better than even the hand-tuned system.

Figure 4 compares the number of inference steps that each configuration required to find a
proof of specifications (the y axis) with varying numbers of literals in the specification (the x-axis).
This graph clearly shows the exponential nature of deductive synthesis when using only general-
purpose tactics. The manually-tuned and TOPS-generated configurations scale relatively well. This
also shows that the TOPS system outperformed even the hand-tuned system, and that the number
of steps that the TOPS system required to find a proof grew at about one third the rate of the hand-
tuned system.

6.0 Conclusions
Program synthesis tools based on deductive synthesis are high assurance, but they have been

severely limited by their inefficiency and inability to scale up to larger specifications. Manual meth-
ods for increasing their efficiency by tuning of tactics and strategies makes it very difficult to main-
tain them in the context of a changing target domain.

We have presented empirical results based on a prototype system for automatically compiling
domain theories into procedures for deductive synthesis. This system generates procedures specif-
ically for deductive synthesis in Amphion-structured domain theories. The results show that the
compiled system is more efficient than even systems hand-tuned by theorem proving experts.

Acknowledgments
Thanks to Tom Pressburger and John Cowles for assisting with the technical content and pre-

sentation of this paper.

High Integrity Software Conference, Albuquerque, New Mexico, October 1997.

References
[Burckert 91] H. J. Burckert, “A Resolution Principle for a Logic With Restricted Quantifiers,”Lec-

ture Notes in Artificial Intelligence, Vol. 568, Springer-Verlag, 1991.
[Green 69] C. Green, “Applications of Theorem Proving,”IJCAI 69, 1969, pp. 219-239.
[Hoare 73] C.A.R. Hoare, “Proof of Correctness of Data Representations,”Acta Informatica, 1973,

pp. 271-281.
[Komorowski 92] J. Komorowski, “An Introduction to Partial Deduction Framework,” inMeta-

Programming in Logic, Lecture Notes in Artificial Intelligence, Vol. 649, Springer-Verlag,
1992, pp. 49-69.

[Lowry et al.94] M. Lowry, A. Philpot, T. Pressburger, and I. Underwood, “A Formal Approach
to Domain-Oriented Software Design Environments,”KBSE, 1994.

[Lowry and Van Baalen 97] M. Lowry and J. Van Baalen, “META-Amphion: Synthesis of Efficient
Domain-Specific Program Synthesis Systems”,Automated Software Engineering, vol. 4,
1997, pp. 199-241.

[Manna and Waldinger 92] Z. Manna and R. Waldinger, “Fundamentals of Deductive Program
Synthesis,”IEEE Transactions on Software Engineering, Vol. 18, No. 8, August 1992, pp.
674-704.

[Nelson and Oppen 79] G. Nelson, and D. Oppen, “Simplification By Cooperating Decision Proce-
dures,”ACM Transactions on Programming Languages and Systems, No. 1, 1979, pp. 245-
257.

[Roach 97] S. Roach, “TOPS: Theory Operationalization for Program Synthesis,” Ph.D. Thesis at
University of Wyoming, 1997.

[Selman and Kautz 96] B. Selman and H. Kautz, “Knowledge Compilation and Theory Approxi-
mation”,JACM, Vol. 43, No. 2, March 1996, pp. 193-224.

[Shostak 84] R. Shostak, “Deciding Combinations of Theories,”Journal of the ACM, Vol. 31, 1984,
pp. 1-12.

[Stickel 85] M. Stickel, “Automated Deduction by Theory Resolution,”Journal of Automated Rea-
soning, Vol. 1, 1985, pp. 333-355.

 [Stickelet al.94] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood, “De-
ductive Composition of Astronomical Software from Subroutine Libraries,” CADE-12,
1994.

[Van Baalen 91] J. Van Baalen, “The Completeness of DRAT, A Technique for Automatic Design
of Satisfiability Procedures,”International Conference of Knowledge Representation and
Reasoning, 1991.

 [Van Baalen 92] J. Van Baalen, “Automated Design Of Specialized Representations,”Artificial In-
telligence, Vol. 54, 1992.

[Van Baalen and Cowles 97] J. Van Baalen, J. Cowles, private communication, 1997.

